groundwork-validation Documentation
Release 0.1.4

team useblocks

May 09, 2017

Contents

1 Why validation is needed 3
2 Who requests validation? 5
3 Installation 7
301 VIapip . . oo o e e e e e e e 7

3.2 FromsSources i i e e e e e e e e e e e e e e e e 7

4 Content 9
4.1 Plugins L e 9
4.1.1 GwDbValidator e e e e e e 9

42 Patterns o e e e e e e e e e e e 11
4.2.1 GwValidatorsPattern e e e e e e 11

4.2.2 GwDbValidatorsPattern e e e e e e e 14

423 GwFileValidatorsPattern 17

424 GwCmdValidatorsPattern 20

43 Traceability o e e e e e e e e e e e e e e 23
43.1 ReqUIremMents v v v v i i e 24

432 Specifications e e e e e e e e e e e e e 25

433 TestCases v v i e e e e e e e e e e e e e e 25

4.4 APL . . e 25
441 Plugins e 25

442 Patterns o e e e e e e e e e e e e e e e e 26

45 TestCasesS . . v v v i e e e e e e e e e 30
45.1 Plugins e e e e e e 30

452 Patterns e e e e e e e e e e e e e e e e 31

Python Module Index 33

groundwork-validation Documentation, Release 0.1.4

groundwork framework

groundwork is a plugin based Python application framework, which can be used to create various types of applica-
tions: console scripts, desktop apps, dynamic websites and more.

Visit groundwork.useblocks.com or read the technical documentation for more information.

This Python package is designed for applications, which are based on the groundwork application framework.
All of its plugins and patterns are focused on application validation during runtime.
This package contains the following groundwork extensions:
Plugins
e GwDbValidator - Validates automatically all database model requests.
Patterns
* GwValidatorsPattern - Provides functions to hash and validate python objects.

e GwDbValidatorsPattern - Allows the registration of database model classes to validate retrieved data on each
request.

* GwFileValidatorsPattern - Creates and validates hashes for given files.

e GwCmdValidatorsPattern - Validates output and return code of given command (E.g. to validate an installed
version of a tool)

Contents 1

https://groundwork.readthedocs.io
http://groundwork.useblocks.com
https://groundwork.readthedocs.io
https://groundwork.readthedocs.io

groundwork-validation Documentation, Release 0.1.4

2 Contents

CHAPTER 1

Why validation is needed

Validation is mostly needed, if your application needs input data and must be sure that this data is valid and not
somehow corrupted.

A common case is the usage of files, which must be copied from an external source. During the transport over the
network, the data may get corrupted. To be sure that this is not the case, a hash of this file can be build and stored
beside the file. After the file is downloaded, the hash is rebuild and compared to the stored one.

Another use case is the usage of databases. If your application is the only one which is allowed to store and change
specific data inside a database, you should be able to validate these data before your plugin is using it again (This use
case is supported by GwDbValidatorsPattern and GwDbValidator).

groundwork-validation Documentation, Release 0.1.4

4 Chapter 1. Why validation is needed

CHAPTER 2

Who requests validation?

In most cases validation may be overengineered, if you are developing a small script for yourself.

However there are scenarios and domains, which need a proven validation of data, so that your application is allowed
and verified to be used inside this domains.

For instance if you are developing solutions for the automotive industry and your solutions may affect the software,
which runs on electronic control units (ECUs) of a car, your application must be ISO 26262 compliant. And this
normally needs a proven validation of in- and output data (beside a lot of other stuff).

https://en.wikipedia.org/wiki/ISO_26262

groundwork-validation Documentation, Release 0.1.4

6 Chapter 2. Who requests validation?

CHAPTER 3

Installation

Via pip

To install groundwork—-validation simply use pip:

’pip install groundwork-validation

From sources

Using git and pip:

git clone https://github.com/useblocks/groundwork-validation
cd groundwork-validation
pip install -e

groundwork-validation Documentation, Release 0.1.4

8 Chapter 3. Installation

CHAPTER 4

Content

Plugins

GwDbValidator

This plugin automatically activates the validation of all database models, which are and will be registered via
groundwork-database.

On activation GwDbValidator fetches all existing database models and activates their validation by using
register () of GwValidatorsPattern.

It also registers a receiver to get notified, if a new database model is registered. If this is the case, it also registers a
new validator for this new model.

Activation and Usage

All you have to do is to activate the plugin, which is done by adding its name to your application configuration:

LOAD_PLUGINS = ["MyDbPlugin", "MyOtherPlugin", "GwDbValidator"]

That’s it. From now on all important database actions get validated.

Configuration

GwDbValidator is based on DbValidatorsPlugin and therefore needs the same Configuration.

You need to set the parameter HASH_DB, which defines the database to be used for storing hash values:

HASH_DB = "sqlite://%s/hash_db" % APP_PATH

groundwork-validation Documentation, Release 0.1.4

Requirements & Specifications

The following sections describes the implemented requirements and their related specifications.

ID Title Type Status Links | Tags
R_001 | Hashed write requests on database Require- imple- gwdbvalida-
tables ment mented tor_plugin;
Available requirements | R_002 | Validated read requests on database Require- imple- gwdbvalida-
tables ment mented tor_plugin;
R_003 | Configuration only Require- imple- gwdbvalida-
ment mented tor_plugin;
ID Title Type Status Links Tags
S_001| Using of groundwork pattern Specifica- | imple- R _001; gwdbvalida-
Available specifications GwDbValidatorPattern tion mented R _002 tor_plugin;
S_002| Automatic database table registration for | Specifica- | imple- R_003 gwdbvalida-
validation tion mented tor_plugin;

Requirements

Requirement: Hashed write requests on database tables (R_001)
As developer I want my write requests being hashed and available for later use.
status: implemented
tags: gwdbvalidator_plugin;

Requirement: Validated read requests on database tables (R_002)

As developer I want to be sure, that all read requests on database tables are validated based on a stored
hash

status: implemented
tags: gwdbvalidator_plugin;
Requirement: Configuration only (R_003)
As developer I want to activate the validation of all database tables by configuration options only.
status: implemented

tags: gwdbvalidator_plugin;

Specification

Specification: Using of groundwork pattern GwDbValidatorPattern (S_001)

We are using the GwDbValidatorsPattern to implement Hashed write requests on database tables (R_001)
und Validated read requests on database tables (R_002).

status: implemented
tags: gwdbvalidator_plugin;
links: R_001 ; R_002

Specification: Automatic database table registration for validation (S_002)

10 Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

To easily activate validation of all registered database tables, the plugin needs to perform the following
actions during activation:

* Request all already registered database tables and register a new db-validator for them

* Register a listener for the signal db_class_registered and register a new validator every time the
signal is send and the newly registered database class is provided.

status: implemented
tags: gwdbvalidator_plugin;
links: R 003

Patterns

GwValidatorsPattern

This pattern allows plugins to register validators, which can be used to hash and validate python objects.

A validator can be configured to use a specific hash algorithm and hash specific attributes of an given object only. This
maybe necessary, if unhashable python object types are used inside given object.

Note: GwValidatorsPattern uses the pickle function of Python to build a hashable, binary-based representation of
your data. There are some data types, which can not be pickeled. In this case the validator must be configured to
ignore these specific attributes of your data.

Register a new validator

To register a new validator, a plugin must inherit from GwValidatorsPattern and use register () for regis-
tration:

from groundwork validation.patterns import GwValidatorsPattern

class My Plugin (GwValidatorsPattern):
def _ init__ (self, app, **kwargs):
self.name = "My_Plugin"
super (My_Plugin, self).__init__ (app, =**kwargs)

def activate(self):
self.validator = self.validators.register ("my_validator", "test validator™)

Creating a hash

Hashes can be build for nearly each python object by using hash ():

class My Plugin(GwValidatorsPattern) :

def get_hash(self):
data = "test this"
self.my_hash = self.validator.hash(data)

4.2. Patterns 11

https://docs.python.org/3.5/library/pickle.html

groundwork-validation Documentation, Release 0.1.4

Validate an object by given hash

To validate an object, all you need is the hash and the function validate ():

class My Plugin(GwValidatorsPattern) :

def validate_hash(self):
data = "test thig"

if self.validator.validate (data,

print ("Data is valid")

else:

self.my_hash)

print ("Data is invalid. We stop here!™)
sys.exit (1)

is True:

Note: The plugin developer is responsible for safely storing hashes (e.g. inside a database).

Requirements & Specifications

The following sections describes the implemented requirements and their related specifications.

Available requirements

Available specifications

Requirements

ID Title Type Status | Links | Tags

R_D8C4B | Validator registration | Requirement gwvalidator

R_6ASAF | Getting a validator Requirement gwvalidator

R_E3793 | Validator functions Requirement gwvalidator

ID Title Type Sta- Links Tags

tus
S_F7DDB | register() function for Specifica- R_DS8C4B; gwval
self.validators tion R_6ASAF tor

S _IFB7D | validate() function for validator Specifica- R_E3793 gwval
tion tor

S 10710 hash() function for validator Specifica- R E3793 gwval
tion tor

Requirement: Validator registration (R_D8C4B)

As developer I want to register my own specific validator to be able so speccify:

* name

e description

* hash algorithm

¢ whitelist for hashable attributes

tags: gwvalidator

Requirement: Getting a validator (R_6A8AF)

As developer I want to get a validator object to use it for handling validations tasks on selected objects.

tags: gwvalidator

12

Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

Requirement: Validator functions (R_E3793)
As developer I want my validators to provide the following functions to me:
* Creating of hashes
* Validating of hashes

tags: gwvalidator

Specification

Specification: register() function for self.validators (S_F7DDB)

A function self.validators.register must be implemented, to allow the registration and re-
questing of validators.

The register function will have the following parameters:
* name
* description
¢ algorithm - default is hashlib.sha256
¢ whitelist - default is []
The returned object must be a instance of the class Validator.
tags: gwvalidator
links: R_DS8C4B ; R_6ASAF
Specification: hash() function for validator (S_10710)
An instance of the class Validator has ahash() function, which has the following parameters:
* data
e return_hash_object
* hash_object
e strict
Where data is the object to hash.
hash_object can be used to provide an hash object, which gets updated instead of creating a new one.
If strict is True, all configured attirbutes from the whitelist must exist inside the given data.

If return_hah_object is True, the hash object, which is used by hashlib will be returned. Otherwise a
hexdigest string representation.

tags: gwvalidator
links: R_E3793
Specification: validate() function for validator (S_1FB7D)
An instance of the class Validator has a validate() function, which has the following parameters:
e data

* hash_string

4.2. Patterns 13

groundwork-validation Documentation, Release 0.1.4

The data is hashed and the calculated hash values is compared against the given hash_string. If they are
equal, True must be returned. Otherwise False.

tags: gwvalidator

links: R_E3793

GwDbValidatorsPattern

This patterns provides functions to automatically hash and validate data requests on SQLAlchemy models.

It is used to prove that data handling of used libraries and services works correct. The below image shows the flow
of data which is stored to a database and requested back. As you can see at least 3 libraries/services are used, which
behavior and source code is not under your full control.

Database |
Ve S ~. I_/"’ S \
| ORM Wrapper

ORM Wrapper

. (SQLAIchemy) | (SQLAIchemy))
\\\-7 - ’/.' " - »

Validation

Application

Every time a registered database model is updated and uploaded to the database (add -> commit),
GwDbValidatorsPattern creates and stores a hash of the updated data model.

And every time a request is made on a registered database model (e.g by model.query.filter_by(x="abc”).all()),
GwDbValidatorsPattern validates each received row against stored hashes.

Hashes are stored inside a database (via groundwork-database) and based on its configuration, an external database
may be used so that hashes are still available and valid after application restarts.

Register a new database validator

To register a new database validator, a plugin must inherit from GwDbValidatorsPatternanduse register ()
for registration:

from groundwork_validation.patterns import GwDbValidatorsPattern

14 Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

class My Plugin (GwDbValidatorsPattern) :
def __init__ (self, app, =**kwargs):
self.name = "My_Plugin"
super (My_Plugin, self).__init__ (app, =**kwargs)
self.db = None
self.Test = None

def activate(self):

START: groundwork-database related configuration

ddasadasddasdsasisasdsasdsasdsddadadssddatdsatidasdsatdaaddaddadadaaddsi

Let's create a new database, which models shall use validated request.
self.db = self.app.databases.register ("test_db",

"sqglite://",

"database for test values")

A simple SQLAlchemy database model
class Test (self.db.Base):
_ _tablename__ = "test"
id = Column (Integer, primary_key=True)
name = Column (String(512), nullable=False, unique=True)

Register our database model

self.Test = self.db.classes.register (Test)
Create all tables

self.db.create_all()

#EFRAFFAAFHAAFFAAFRAAFEAAFRAFF AR FRAAF AR FHAAFRAAF AR AR AR AR AR A A

END: groundwork-database related configuration

Register and activate validation for your model

self.validators.db.register ("db_test_validator",
"my db test validator",
self.Test)

Validate requests

Your validation has already started. The registration of a database model is enough to start the validation for each
request. If a validation problem occurs, groundwork-validation will throw the exception ValidationError.

Test validation

To test the validation, you need to manipulate the data of a stored and monitored data model. This could be done via
an external database editor like the Sqlite Browser or by executing SQL statements directly:

from groundwork validation.patterns import GwDbValidatorsPattern

class My Plugin (GwDbValidatorsPattern):

def activate(self):

my_test = self.Test (name="blub")
self.db.add (my_test)

4.2. Patterns 15

http://sqlitebrowser.org/

groundwork-validation Documentation, Release 0.1.4

self.db.commit ()
self.db.query (self.Test) .all ()

my_test.name = "Boohaaaa"
self.db.add (my_test)
self.db.commit ()
self.db.query(self.Test) .all()

Execute sgl-statement, which does not trigger the sqlalchemy events.
So no hash gets updated.
self.db.engine.execute ("UPDATE test SET name='not_working' WHERE id=1")

Reloads the data from db and will throw an exception
self.db.session.refresh (my_test)

Configuration

GwDbValidatorsPattern stores the hashes in its own database. Like other databases in groundwork, the used
database connection string can be configured inside the application configuration file by setting HASH_DB:

HASH_DB = "sqglite://%s/hash_db" % APP_PATH

The format of the connection string is documented inside the SQLAlchemy documentation.

If no connection string is configured, “sqlite://”’ is used as default value.

Technical background
To provide a reliable validation, the GwDbValidatorsPattern hooks into the event system of SQLAlchemy to
get notified about each important action and run own validation tasks.

To store its own hashes, GwDbValidatorsPattern is using its own database, which is registered and available in
groundwork under the name hash_db.

For each database model, GwDbValidatorsPattern registers a validator with the help of
GwValidatorsPattern. As attributes only the table columns are taking into account. So no additional
attributes like SQLALchemy internal ones or model functions are used.

Storing data

GwDbValidatorsPattern has registered its own hash creation function for the SQLAlchemy events af-
ter_update and after_insert.

If one of these events is triggered, GwDbValidatorsPattern gets the model instance and creates with the help of
GwValidatorsPattern anew hash.

This hash gets stored together with an ID into the hash database. The ID must be unique and our function must be able
to regenerate it based on given and static information. So the ID contains: validator name, database table name and
model instance id. Example: my_validator.user_table.5. This kind of an ID allows us to store hashes for all database
models into one single database table.

Receiving data

GwDbValidatorsPattern has registered its own hash validation function for the SQLAlchemy event refresh.

16 Chapter 4. Content

http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
http://docs.sqlalchemy.org/en/latest/core/event.html

groundwork-validation Documentation, Release 0.1.4

If this gets called, GwDbValidatorsPattern retrieves the received database model instance. For this it regener-
ates the hash ID and requests the stored hash value. With the configured validator of the GwValidatorsPattern
it validates the stored hash against the retrieved database model instance.

If the validation fails, the exception ValidationError gets raised. If this happens, the plugin developer is respon-
sible to handle this exception the correct way.

Requirements & Specifications

The following sections describes the implemented requirements and their related specifications.

Available requirements ID Title Type Status | Links | Tags
1 R _7F7C2 | Validation per database table | Requirement gwdbvalidator_pattern
. . . ID Title Type Status | Links Tags
Available specifications S _5917A | DB Validation registration | Specification R _7F7C2 | gwdbvalidator_pattern

Requirements

Requirement: Validation per database table (R_7F7C2)

As developer I want to be able to to activate the validation of single database table so that I'm sure
retrieved data is valid.

tags: gwdbvalidator_pattern

Specification

Specification: DB Validation registration (S_5917A)

A function self.validators.db.register must be implemented, to allow the registration of
database classes for validation. The following parameters must be available:

» name of the registered db validator.

e description of the registered db validator.

* database class (sqlalchemy), which write/read operations shall be validated.
tags: gwdbvalidator_pattern
links: R_7F7C2

GwFileValidatorsPattern

Creating a hash

For each file a hash value can be created. GwF'ileValidatorsPattern cares about the correct handling of files,
even if the file size is too big to get handled in one step.

To create a hash, all you have to do is to use the function hash ():

from groundwork validation.patterns import GwFileValidatorsPattern

class My Plugin (GwFileValidatorsPattern):
def _ init__ (self, app, **kwargs):

4.2. Patterns 17

groundwork-validation Documentation, Release 0.1.4

self.name = "My_Plugin"
super (My_Plugin, self)._ _init__ (app, =**kwargs)

def activate (self):
my_file = "/path/to/file.txt"

Generate and retrieve a string based hash value
my_hash = self.validators.file.hash(my_file)

Store hash value directly into a file
my_hash = self.validators.file.hash(my_file, hash_file = "/path/to/file.txt.
—hash")

def deactivate(self):
pass

Please see hash () for a complete list of available parameters.

Validate a file

Using a hash string

For validation the function validate () is available:

from groundwork validation.patterns import GwFileValidatorsPattern

class My Plugin (GwFileValidatorsPattern):
def _ init_ (self, app, **kwargs):
self.name = "My_Plugin"
super (My_Plugin, self).__init__ (app, =**kwargs)

def activate(self):
my_file = "/path/to/file.txt"

my_hash = self.validators.file.hash(my_file) # Generate a hash

if self.validators.file.validate (my_file, my_hash):
print ("Hash is valid")

else:
print ("Hash is NOT wvalid")

def deactivate (self):
pass

Using a hash file

It is also possible to validate a file against a hash file, which has stored the hash at the first line:

from groundwork validation.patterns import GwFileValidatorsPattern

class My Plugin (GwFileValidatorsPattern):
def _ init__ (self, app, *»*kwargs):
self.name = "My_Plugin"
super (My_Plugin, self).__init__ (app, =**kwargs)

18 Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

def activate(self):
my_file "/path/to/file.txt"
my_hash_file "/path/to/file.hash"

if self.validators.file.validate (my_file,
print ("Hash is valid")
else:
print ("Hash is NOT wvalid")
def deactivate(self):
pass

hash_file=my_hash_file):

Please see validate () for a complete list of available parameters.

Requirements & Specifications

The following sections describes the implemented requirements and their related specifications.

Available requirements ID Title Type Status | Links | Tags
1 R_8EISE | File validation | Requirement gwfilevalidators
ID Title Type Status | Links Tags
Available specifications | S_CFBC/ | Hashing a file Specification R_SEISE | gwfilevalidators
S_31C31 | Validating a file | Specification R_SEISE | gwfilevalidators

Requirements

Requirement: File validation (R_8E18E)

As developer I want to be able to easily hash and validate files to detect every kind of file corruption.

tags: gwfilevalidators

Specifications

Specification: Hashing a file (S_CFBC1)

A function hash is implemented for self.validators.file, which is able to create a hash value

for a given file path. The function must have the following parameters:

file - file path

validator - An instance of Validator. Can be None

hash_file - File to store the hash value. optional

value.

tags:
links: R_SEISE

Specification: Validating a file (S_31C31)

gwfilevalidators

return_hash_object - Returns the hashlib hash object instead of a string representation

blocksize - Max. size of a block, which gets read in gets hashed and maybe update the prior hash

4.2. Patterns

19

groundwork-validation Documentation, Release 0.1.4

A function validate is implemented for self.validators. file, which allows the validation of
a file against a given hash.

The function has the following attributes:
« file - file path
¢ hash_value
* hash_file - if given, hash_value is read from this file path
* validator - An instance of Validator. Can be None

* blocksize - Max. size of a block, which gets read in gets hashed and maybe update the prior hash
value.

Returns True, if calculated hash values is euqal to the given hash value.
tags: gwfilevalidators

links: R_SEISE

GwCmdValidatorsPattern

The GwCmdValidatorsPattern can be used to valid the execution of a command.
This can helpful to verify the version of an installed tool by checking, if the output contains the correct version.

For some cases also the correct behavior can be validated by checking the correct return value or by setting a limit for
the maximum allowed execution time.

Validating the output of a command

All different types of command validations are available by using the function validate ():

import sys
from groundwork validation.patterns import GwCmdValidatorsPattern

class My Plugin(GwCmdValidatorsPattern) :
def _ init__ (self, app, **kwargs):
self.name = "My_Plugin"
super (My_Plugin, self).__init__ (app, =**kwargs)

def activate(self):
if self.validators.cmd.validate ("dir", search="my_folder"):
print ("Command 'dir' works as expected.")
else:
print ("Command 'dir' seems not to work correctly. We stop here")
sys.exit (1)

def deactivate(self):
pass

Instead of searching for a specific string, you can also use a regular expression:

Checks for an e-mail address
if self.validators.cmd.validate ("dir",
regex="("[a-zA-20-9_.+-]1+Q@[a-zA-Z0-9-]1+\. [a-zA-Z20-9-.
—]+S) ")
print ("Found at least one e-mail address")

20 Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

Validating the return code

By validating the return code, you can easily check if the command is available and exits like expected. If the return
code is not allowed, the exception NotAllowedReturnCode is raised:

import sys

from groundwork validation.patterns import GwCmdValidatorsPattern

from groundwork validation.patterns.gw_cmd_validators_pattern.gw_cmd validators_
—pattern import NotAllowedReturnCode

class My Plugin (GwCmdValidatorsPattern):
def __ _init__ (self, app, =**kwargs):
self.name = "My_Plugin"
super (My_Plugin, self).__init__ (app, =*=*kwargs)

def activate(self):
try:
if self.validators.cmd.validate ("dir", search="my_ folder", allowed_
—return_codes=[0, 1]):
print ("Command 'dir' works a expected.")
else:
print ("Command 'dir' seems not to work correctly. We stop here")
sys.exit (1)
except NotAllowedReturnCode:
print ("Command exists with not allowed status code. Validation failed!

sys.exit (1)

Setting a timeout

By default the command is killed after a timeout of 2 seconds and CommandTimeoutExpired is raised. You are
free to set your own timeout for each validation:

import sys
from groundwork validation.patterns import GwCmdValidatorsPattern
from groundwork validation.patterns.gw_cmd_validators_pattern.gw_cmd validators_
—pattern \
import NotAllowedReturnCode, CommandTimeoutExpired

class My Plugin (GwCmdValidatorsPattern):
def _ init_ (self, app, **kwargs):
self.name = "My_Plugin"
super (My_Plugin, self).__init__ (app, =*=*kwargs)

def activate(self):
try:
if self.validators.cmd.validate ("dir", search="my_ folder", timeout=5):
print ("Command 'dir' works a expected.")
else:
print ("Command 'dir' seems not to work correctly. We stop here")
sys.exit (1)
except CommandTimeoutExpired:
print ("Command has not finished and raised a timeout. This is not,
—expected. We stop here!")
sys.exit (1)

test:

4.2. Patterns 21

groundwork-validation Documentation, Release 0.1.4

pip install

Requirements & Specifications

The following sections describes the implemented requirements and their related specifications.

Available requirements

Available specifications

Requirements

ID Title Type Status | Links | Tags
R_77A07 | Command runtime validation Requirement gwemdvalidators
R_79027 | Command output validation Requirement gwcmdvalidators
R_72AC6 | Command exit code validation | Requirement gwemdvalidators
ID Title Type Sta- Links Tags
tus
S_8CIDS | command timeout check | Specifica- R_77A07 gwcemdval
tion tors
S 2C5EC | Command execution Specifica- R_79027; R_72AC6; gwemdval
tion R_77A07 tors
S_102F8 | command output check | Specifica- R_79027 gwemdval
tion tors
S_EB190 | command exit code Specifica- R_72AC6 gwcemdval
check tion tors

Requirement: Command output validation (R_79027)

As developer I want to be able to validate the correct output of an executed command.

tags: gwcmdvalidators

Requirement: Command exit code validation (R_72AC6)

As developer I want to be able to validate the correct exit code of an executed command

tags: gwemdvalidators

Requirement: Command runtime validation (R_77A07)

As developer I want to be able to validate the maximum needed run time of an executed command

tags: gwcmdvalidators

Specifications

Specification: Command execution (S_2C5EC)

With self.validators.cmd.validate the developer is able to execute a command on command line. This
execution takes place in a subprocess, but the application must wait till it ends.

The first argument must be the command to execute

tags: gwcmdvalidators

links: R_79027 ; R_72AC6 ; R_77A07

Specification: command output check (S_102F8)

22

Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

As keyword argument “search” of self.validators.cmd.validate the output on STDOUT is checked, if the
given string is part of it.

If yes, True is returned. Otherwise False
tags: gwcmdvalidators
links: R_79027
Specification: command exit code check (S_EB190)

As keyword argument “allowed_return_codes” of self.validators.cmd.validate as list of allowed return
codes can be defined.

If the retrieved return code is not in this list, the Error Not A1l owedReturnCode is raised.
tags: gwcmdvalidators
links: R_72AC6
Specification: command timeout check (S_8C1DS)
As keyword argument “timeout” of self.validators.cmd.validate a time in seconds can be set.

If the execution of the given command takes longer as specified, the execution is aborted and the error
CommandTimeoutExpired is raised.

tags: gwcmdvalidators

links: R_77A07

Traceability

This project has documented its requirements, specifications and test cases.

4.3. Traceability 23

groundwork-validation Documentation, Release 0.1.4

Requirements

ID Title Type Status Links | Tags

R_77A07 | Command runtime validation Require- gwcemdvalidators
ment

R_001 Hashed write requests on database Require- imple- gwdbvalida-

tables ment mented tor_plugin,

R_DS8C4B | Validator registration Require- gwvalidator
ment

R_002 Validated read requests on database Require- imple- gwdbvalida-

tables ment mented tor_plugin;

R_003 Configuration only Require- imple- gwdbvalida-
ment mented tor_plugin;

R_79027 | Command output validation Require- gwcmdvalidators
ment

R_72AC6 | Command exit code validation Require- gwcmdvalidators
ment

R_6ASAF | Getting a validator Require- gwvalidator
ment

R_7F7C2 | Validation per database table Require- gwdbvalida-
ment tor_pattern

R_8EISE | File validation Require- gwfilevalidators
ment

R_E3793 | Validator functions Require- gwyvalidator
ment

24 Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

Specifications

ID Title Type Status Links Tags
S 8CID8 command timeout check Specifi- R _77A07 gwemdvalida-
cation tors
S_F7DDBregister() function for Specifi- R _DS8C4B; gwvalidator
self.validators cation R 6AS8AF
S_5917A DB Validation registration Specifi- R_7F7C2 gwdbvalida-
cation tor_pattern
S_1FB7D validate() function for validator Specifi- R_E3793 gwvalidator
cation
S _2C5EC Command execution Specifi- R_79027; R_72AC6; | gwcmdvalida-
cation R _77A07 tors
S_102F§ command output check Specifi- R 79027 gwemdvalida-
cation tors
S_001 | Using of groundwork pattern Specifi- | imple- R_001; R_002 gwdbvalida-
GwDbValidatorPattern cation mented tor_plugin;
S_10710, hash() function for validator Specifi- R _E3793 gwvalidator
cation
S_CFB(IHashing a file Specifi- R SEISE gwfilevalidators
cation
S_002 | Automatic database table Specifi- | imple- R_003 gwdbvalida-
registration for validation cation mented tor_plugin;
S _EBI19() command exit code check Specifi- R_72AC6 gwemdvalida-
cation tors
S_31C3] Validating a file Specifi- R _S8EISE gwfilevalidators
cation
Test Cases
ID Title Type Status | Links Tags
T 4BI1C4 | gwvalidator tests | Test Case S_IFB7D; S_10710 | gwvalidator

API

Plugins

GwDbValidator

class GwDbValidator (app, **kwargs)

Automatically adds and activate validation to eahc database model.

activate ()

During activation, a receiver is created and listing for new database models. Existing database models are
collected and validation gets activated.

Returns None

deactivate ()

Currently nothing happens here sigh

Returns None

4.4. API

25

groundwork-validation Documentation, Release 0.1.4

Patterns

GwValidatorsPattern
class GwvalidatorsPattern (app, **kwargs)
Allows the creation of hashes for python objects (and its validation).

activate ()
Must be overwritten by the plugin class itself.

deactivate ()
Must be overwritten by the plugin class itself.

class ValidatorsPlugin (plugin)
Cares about the Validator handling on plugin level.

get (name)
Returns a single or a list of validator instance, which were registered by the current plugin.

Parameters name — Name of the validator. If None, all validators of the current plugin are
returned.

Returns Single or list of Validator instances

register (name, description, algorithm=None, attributes=None)
Registers a new validator on plugin level.

Parameters
* name — Unique name of the validator
* description — Helpful description of the validator
* algorithm - A hashlib compliant function. If None, hashlib.sha256 is taken.

e attributes — List of attributes, for which the hash must be created. If None, all con-
tained attributes are used.

Returns Validator instance
unregister (name)

class ValidatorsApplication (app)
Cares about the Validator handling on application level.

get (name, plugin)
Returns a single or a list of validator instance

Parameters
* name — Name of the validator. If None, all validators are returned.

* plugin - Plugin instance, which has registered the requested validator. If None, all
validators are returned.

Returns Single or list of Validator instances

register (name, description, plugin, algorithm=None, attributes=None)
Registers a new validator on application level.

Parameters
* name — Unique name of the validator

* description — Helpful description of the validator

26 Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

* algorithm— A hashlib compliant function. If None, hashlib.sha256 is taken.

e attributes — List of attributes, for which the hash must be created. If None, all con-
tained attributes are used.

¢ plugin — Plugin instance, for which the validator gets registered.
Returns Validator instance
unregister (name)

class Validator (name, description, algorithm=None, attributes=None, plugin=None)
Represent the final validator, which provides functions to hash a given python object and to validate a python
object against a given hash.

get_hash_object ()
Returns a hash object, which can be used as input for validate functions.

Returns An unused hash object

hash (data, hash_object=None, return_hash_object=False, strict=False, no_pickle=False)
Generates a hash of a given Python object.

Parameters
* data — Python object

* return_hash_object - If true, the complete hashlib object is returned instead of a
hexdigest representation as string.

* hash_object — An existing hash object, which will be updated. Instead of creating a
new one.

e strict — If True, all configured attributes must exist in the given data, otherwise an
exception is thrown.

* no_pickle — If True data is not pickled before hash is calculated. Helpful, if data is
already serialised (like file inputs)

Returns hash as string

validate (data, hash_string, no_pickle=False)
Validates a python object against a given hash

Parameters
* data - Python object

* hash_string — hash as string, which must be compliant to the configured hash algo-
rithm of the used validator.

* no_pickle — If True data is not pickled before hash is calculated. Helpful, if data is
already serialised (like file inputs)

Returns True, if object got validated by hash. Else False

GwDbValidatorsPattern
class GwDbValidatorsPattern (app, **kwargs)
Allows the validation of database model requests.

Builds automatically hashes of table rows/model instances and validates these hashes, if a request is made on
these rows.

4.4. API 27

groundwork-validation Documentation, Release 0.1.4

activate ()
Must be overwritten by the plugin class itself.

deactivate ()
Must be overwritten by the plugin class itself.

class DbvalidatorsPlugin (plugin)
Cares about database validators on plugin level

get (name)

register (name, description, db_class)
Registers a new database model and starts its validation.

Parameters
* name — Unique name
* description — Meaningful description
* db_class — sqlalchemy based database model
Returns Instance of DbValidator
unregister (name)

class DbvalidatorsApplication (app)
Cares about database validators on application level

get (name, plugin)

register (name, description, db_class, plugin)
Registers a new database model and starts its validation.

Parameters
* name — Unique name
* description — Meaningful description
* db_class - sqlalchemy based database model
* plugin — Plugin, which registers the DbValidator
Returns Instance of DbValidator
unregister (name)

class Dbvalidator (name, description, db_class, db, hash_model, plugin=None)
Class for storing a database validator. For each registered database validator an instance of this class gets created
and configured.

class ValidationError
Exception, which is thrown if a validation fails.

GweFileValidatorsPattern

class GwFileValidatorsPattern (app, **kwargs)
Allows the creation and validation of hashes for given files.

Usage:

28 Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

from groundwork validation.patterns import GwFileValidatorsPattern

class My Plugin (GwFileValidatorsPattern):
def _ init__ (self, app, **kwargs):
self.name = "My_Plugin"
super (My_Plugin, self).__init__ (app, =*=*kwargs)

def activate(self):
my_hash = self.validators.file.hash("/path/to/file.txt")
self.validators.file.validate ("/path/to/file.txt", my_hash)

activate ()
Must be overwritten by the plugin class itself.

deactivate ()
Must be overwritten by the plugin class itself.

class FileValidatorsPlugin (plugin)

hash (file, validator=None, hash_file=None, blocksize=65536, return_hash_object=False)
Creates a hash of a given file.

Parameters
» file — file path of the hashable file

* validator - validator, which shall be used. If none is given, a default validator will be
used. validator should be registered be the GwValidatorsPattern. Default is None

e hash_file — Path to a file, which is used to store the calculated hash value. Default is
None

* blocksize — Size of each file block, which is used to update the hash. Default is 65536

* return_hash_object — Returns the hash object instead of the hash itself. Default is
False

Returns string, which represents the hash (hexdigest)

validate (file, hash_value=None, hash_file=None, validator=None, blocksize=65536)
Validates a file against a given hash. The given hash can be a string or a hash file, which must contain the
hash on the first row.

Parameters
* file —file path as string
* hash_value - hash, which is used for comparision
e hash_file — file, which contains a hash value

* validator - groundwork validator, which shall be used. If None is given, a default one
is used.

* blocksize — Size of each file block, which is used to update the hash.

Returns True, if validation is correct. Otherwise False

GwCmdValidatorsPattern

class GwCmdvValidatorsPattern (app, **kwargs)
Allows the validation of output, return code and execution time of a given command.

4.4. API 29

groundwork-validation Documentation, Release 0.1.4

Usage:

class My Plugin (GwCmdValidatorsPattern) :

def _ init_ (self, app, **kwargs):
self.name = "My_Plugin"
super (My_Plugin, self).__init__ (app, =**kwargs)

def activate(self):
if self.validators.cmd.validate ("dir", search="my_folder"):
print ("Command 'dir' works a expected.")
else:
print ("Command 'dir' seems not to work correctly. We stop here")
sys.exit (1)

def deactivate (self):
pass

activate ()

Must be overwritten by the plugin class itself.

deactivate ()

Must be overwritten by the plugin class itself.

class CmdvalidatorsPlugin (plugin)

validate (command, search=None, regex=None, timeout=2, allowed_return_codes=None,

decode="utf-8’)
Validates the output of a given command.

The validation can be based on a simple string search or on a complex regular expression. Also the

return_code can be validated. As well as the execution duration by setting a timeout.
Parameters
* command - string, which is used as command for a new subprocess. E.g. ‘git -v’.
* search - string, which shall be contained in the output of the command. Default is None
* regex —regular expression, which is tested against the command output. Default is None

* timeout — Time ins seconds, after which the execution is stopped and the validation
fails. Default is 2 seconds

* allowed_return_codes — List of allowed return values. Default is []
* decode — Format of the console encoding, which shall be used. Default is ‘utf-8’

Returns True, if validation succeeded. Else False.

class NotAllowedReturnCode

class CommandTimeoutExpired

Test Cases

Plugins

30

Chapter 4. Content

groundwork-validation Documentation, Release 0.1.4

GwDbValidatorsPlugin
Patterns
GwDbValidatorPattern

GwValidatorPattern

test_vwvalidator_init ()
Test Case: gwvalidator tests (T_4B1C4)
Test of initialisation, hashing and validation of GwValidatorsPattern

tags: gwvalidator

links: S_/FB7D ;S_10710

GweFileValidatorPattern

GwCmdValidatorPattern

4.5. Test Cases 31

groundwork-validation Documentation, Release 0.1.4

32 Chapter 4. Content

Python Module Index

g
groundwork_validation.patterns.gw_cmd_validators_pattern.gw_cmd_validators_pattern
29
groundwork_validation.patterns.gw_db_validators_pattern.gw_db_validators_pattern,
27
groundwork_validation.patterns.gw_file_validators_pattern.gw_file_validators_pattern,
28
groundwork_validation.patterns.gw_validators_pattern.gw_validators_pattern,
26

groundwork_validation.plugins.gw_db_validator.gw_db_validator

25
t

test_validators, 31

33

groundwork-validation Documentation, Release 0.1.4

34 Python Module Index

Index

A get() (ValidatorsApplication method), 26

activate() (GwCmdValidatorsPattern method), 30 get() (Validat.orsPlugin' method), 26

activate() (GwDbValidator method), 25 get_hash_object() (Validator method), 27

activate() (GwDbValidatorsPattern method), 27 groundwork_ validation.patterns.gw_cmd_validators_pattern.gw_cmd_valid

activate() (GwFileValidatorsPattern method), 29 (module), 29

activate() (Gw ValidatorsPattern method), 26 groundwork_validation.patterns.gw_db_validators_pattern.gw_db_validatos

(module), 27

C groundwork_ validation.patterns.gw_file_validators_pattern.gw_file_validat

CmdValidatorsPlugin (class in ground- (module), 28 e lidat " lidat "
work_validation.patterns.gw_cmd_validators patt%rn gwwor (% 9 spf)la g?g)gw vahidators_pattern.gw_vatidators_patte
30

CommandTimeoutExpired (class in ground- groundwork Valldatlon plugins.gw_db_validator.gw_db_validator

work_validation.patterns.gw_cmd_validators_patt ip(n vla’lll%) (Ors_pattern) .
30 8n é md Validators atterl? 1}’121 Ss in ground-

work_validation.patterns.gw_cmd_validators_pattern.gw_cmd_v:

D 29
DbValidator (class in ground- GwDbValidator (class . n . ground- .
validation. Sugms.gw_db_vahdator.gw_db_vahdator),
work_validation.patterns.gw_db_validators_pattern.gw_db _%ﬁlﬁators patte
28

GwDbValidatorsPattern (class in ground-

DbValidatorsApplication (class " ground- war validation n.p tterns.gw_db_validators_pattern.gw_db_valid:
work_validation.patterns.gw_db_validators_pattern.gw_db yali ators_patte ?

28 .
DbValidatorsPlugin (class in around- GwFileValidatorsPattern (class in ground-
validation n.p tterns.gw_file_validators_pattern.gw_file_vali
work_validation.patterns.gw_db_validators_pattern.gw_db _é(éilﬁators _patte ﬁl
28 .
deactivate() (GwCmdValidatorsPattern method), 30 Gwvahdag;(r)sriat\tzlr%ation gctlt?;ifls w Vl:lidatorsgr(:tltrelzcrlr-l w_validators_p:
deactivate() (GwDbValidator method), 25 e -pallemns.gw— —patiern-gw— P

deactivate() (GwDbValidatorsPattern method), 28
deactivate() (GwFileValidatorsPattern method), 29 H

deactivate() (Gw ValidatorsPattern method), 26 hash() (FileValidatorsPlugin method), 29

F hash() (Validator method), 27

FileValidatorsPlugin (class in ground- N
work_validation.patterns.gw_file_validators _pattegg, gy fi ﬁle lfi attem)(class in ground-
29

work_validation.patterns.gw_cmd_validators_pattern.gw_cmd_ vz
G 30

get() (DbValidatorsApplication method), 28 R

get() (DbValidatorsPlugin method), 28 register() (DbValidatorsApplication method), 28

35

groundwork-validation Documentation, Release 0.1.4

register() (DbValidatorsPlugin method), 28
register() (ValidatorsApplication method), 26
register() (ValidatorsPlugin method), 26

T

test_validator_init() (in module test_validators), 31
test_validators (module), 31

U

unregister() (DbValidatorsApplication method), 28
unregister() (DbValidatorsPlugin method), 28
unregister() (ValidatorsApplication method), 27
unregister() (ValidatorsPlugin method), 26

V

validate() (CmdValidatorsPlugin method), 30
validate() (FileValidatorsPlugin method), 29
validate() (Validator method), 27

ValidationError (class in ground-
work_validation.patterns.gw_db_validators_pattern.gw_db_validators_pattern),
28

Validator (class in ground-
work_validation.patterns.gw_validators_pattern.gw_validators_pattern),
27

ValidatorsApplication (class in ground-
work_validation.patterns.gw_validators_pattern.gw_validators_pattern),
26

ValidatorsPlugin (class in ground-
work_validation.patterns.gw_validators_pattern.gw_validators_pattern),
26

36

Index

	Why validation is needed
	Who requests validation?
	Installation
	Via pip
	From sources

	Content
	Plugins
	GwDbValidator

	Patterns
	GwValidatorsPattern
	GwDbValidatorsPattern
	GwFileValidatorsPattern
	GwCmdValidatorsPattern

	Traceability
	Requirements
	Specifications
	Test Cases

	API
	Plugins
	Patterns

	Test Cases
	Plugins
	Patterns

	Python Module Index

